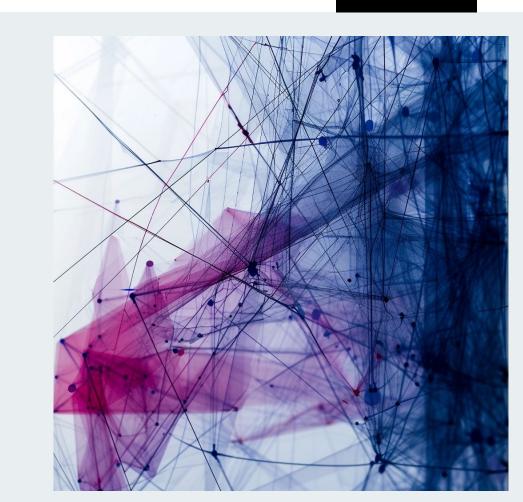
Social Network Analysis


Network Autocorrelation

Dr. Chun-Hsiang Chan

Department of Geography, National Taiwan Normal University

Outline

- Network Autocorrelation Model
- Recall: Regression Basics
- Modeling Social Influence
- Theories on Social Influence
- Communication vs Comparison
- Adjacent vs Non-adjacent
- Operationalization of Weighting Matrix
- Summary
- R installation

1

Quadratic Assignment Procedure (QAP) Regression

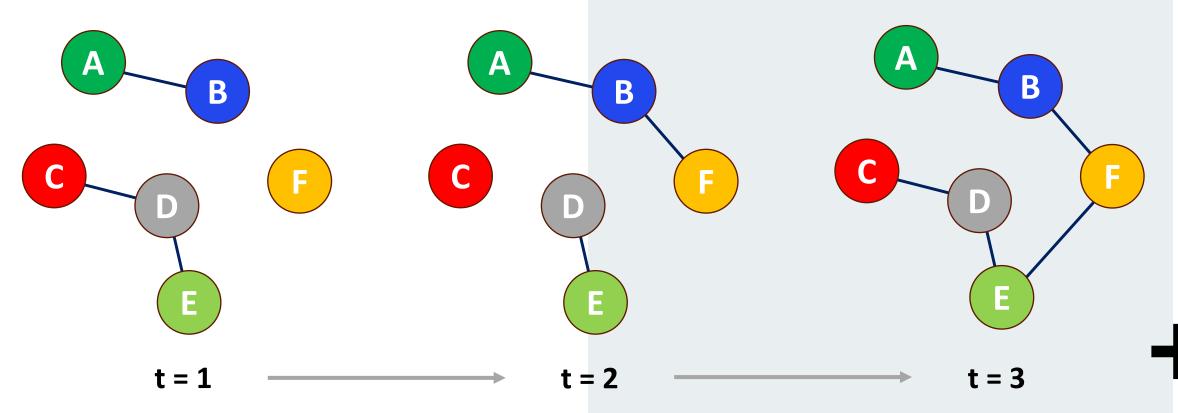
Comparing multiple networks: QAP regression

- The substantive question is how one set of relations (or dyadic attributes) relates to another.
- Are country relations correlated with trade networks?
- Do in-person contacts associated with friendship relations from social media?

Network Autocorrelation Model

Autocorrelation concept in the social networks.

- Thousands of examples show that every decision we made is affected by our surrounding; in other words, the neighboring effect plays an important role in our daily life.
 - Homophily: people are attracted to similar others
 - Influence: people become more similar to their neighbor


Covariates

 Modeling social networks
 parametrically

```
    What creatres
    heterogeneity in
    the probability
    of a tie being
    formed?
```

Attributes of nodes	Heterogeneity by group - average acticity - mixing by group Individual heterogeneity	Dyad
Attributes of links	Heterogeneity in - duration – types (sex, drug,)	Terms
Configurations	Degree distributions (or stars) Cycle distributions (2,3,4, etc.) Shared partner distributions	Dyad Dependent Terms

Temporal Network Dynamics

A statistical technique is employed to analyze the connection between a primary variable of interest (often termed the dependent variable, Y) and one or more explanatory variables (also known as predictors, X).

This method assesses:

- The strength of the relationship.
- The direction of the relationship (whether it's positive, negative, or zero).
- The goodness of fit of the model.

This technique enables the calculation of how much the dependent variable changes when a predictor variable shifts by one unit, while keeping all other predictors constant.

Frequently known as Ordinary Least Squares (OLS) regression

- Its objective is to minimize $(\Sigma(Y_i \widehat{Y}_i)^2)$.
- Regression with a single predictor is termed simple regression
- Regression involving two or more predictors is referred to as multiple regression.
- Similar to correlation, if an explanatory variable significantly predicts the dependent variable, it does not necessarily imply causation.

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_n X_n + \varepsilon$$

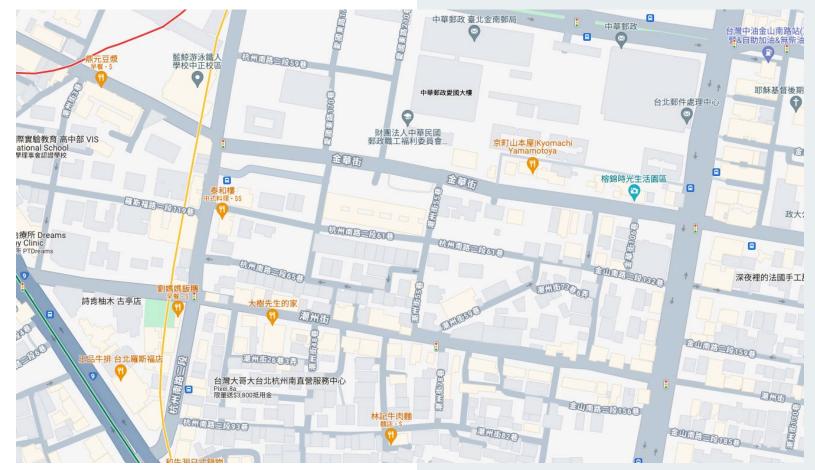
-y: dependent variables

- $-\beta_0, \beta_1, \beta_2, \dots, \beta_n$: coefficients
- $-X_1, X_2, X_3, \dots, X_n$: explanatory variables
- $-\varepsilon$: random error term/ residuals

- The hypothesis of residuals in the OLS regression:
- (1) The expected value of residuals is zero (zero mean) E(u) = 0
- (2) Residuals follow homoskedasticity $var(u) = \sigma^2, \sigma^2$ is a constant
- (3) Residuals are non-autocorrelation $cov(ut, ut - s) = 0, for s \neq 0$
- (4) The relationship between independent variables and residuals is orthogonality cov(x, u) = 0, for any I
- (5) Residuals follow normality

^{May 20, 2024} The residuals follow abovementioned conditions can be regards as independently identical distribution (iid) residuals: $u \sim i. i. d. N(0, \sigma^2)$

- Social networks vs spatial networks
- The observations should be independent of each other


EID	States	Populaton	Area	
1	Texas	30,503,301	695,660	
2	lowa	3,190,369	145,746	
50	Kansas	2,937,880	213,100	

Spatial Regression

- Spatial autocorrelation is present in a variable when nearby observations in space exhibit correlated values (Tobler's Law).
- One of the assumptions of regression is the **independence of observations**. If this assumption is violated, it leads to inaccurate estimations of the β coefficients, and the error term ϵ contains spatial dependencies, meaning it holds meaningful information. However, ideally, we want the error term to be indistinguishable from random noise.

Social Networks vs Road Networks

Spatial Lag Model vs Spatial Error Model

Spatial Lag Model (SLM)

$$y = \rho W y + X\beta + \varepsilon$$

Spatial Error Model (SEM)

$$y - \lambda W y = X\beta - \lambda W X\beta + e$$
$$(I - \lambda W)y = (I - \lambda W)X\beta + e$$

$$y = X\beta + u$$
$$u = \lambda Wu + e$$

13

- Determine the occurrence of social influence:
- Assess if it manifests through the autocorrelation of the dependent variable (SLM), the autocorrelation of disturbances (SEM), or a blend of both.
- Decide which mechanism governs social influence: communication or comparison.
- Make choices regarding which elements of W are zero and which are nonzero.
- -For non-zero elements of W, ascertain the extent of influence exerted.

14

- Network effects model

$$y = \rho W y + X\beta + \varepsilon, \varepsilon \sim N(0, \sigma^2 I)$$

e.g., ego's voting behavior may be influenced by discussing matters with friends (interaction), but will often also depend on ego's status, income, education, and so forth (local effects)

- Network disturbances model

$$y = X\beta + \varepsilon, \varepsilon = \rho W\varepsilon + \nu, \nu \sim N(0, \sigma^2 I)$$

Combined network effect and disturbance

$$y = \rho_1 W_1 y + X\beta + \varepsilon, \varepsilon = \rho_2 W_2 \varepsilon + \nu, \nu \sim N(0, \sigma^2 I)$$

- The decision to model contagion by either autocorrelating the dependent term or the disturbance term represents a theoretical distinction in understanding how contagion occurs.
- Definition: The opinion an actor would demonstrate in the absence of social influence is an actor's intrinsic opinion (Leenders, 1995).

$$-y = \rho_1 W_1 y + X\beta + \varepsilon$$

$$-\varepsilon = \rho_2 W_2 \varepsilon + \nu$$

 $-\nu \sim N(0,\sigma^2 I)$

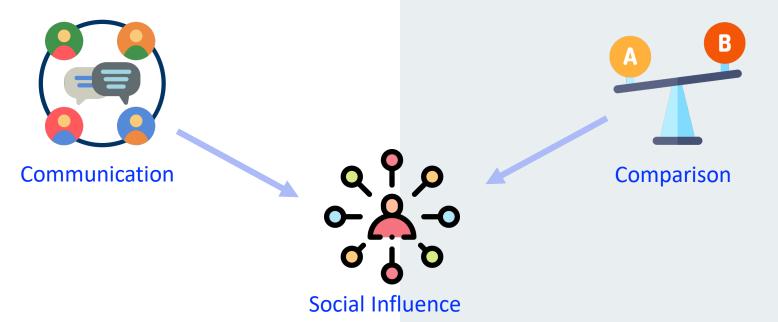
- Ego forms their opinion based on both their inherent beliefs and the perspectives of those around them.
- For example, ego's political inclinations are influenced by their socioeconomic status, education, and income (intrinsic opinion), as well as by the political viewpoints voiced by their family, neighbors, and colleagues (contagion).
- These combined influences jointly shape ego's political position.

- Ego's stance might initially be solely shaped by their inherent opinion; their status, education, and income initially dictate their political outlook.
 However, as ego notices their significant others diverging from their intrinsic opinions, ego adjusts to their deviation.
- -Ego might observe their peers leaning more towards either the left or right side of the political spectrum than what their status, education, and income would suggest. Witnessing this discrepancy, ego feels inclined to shift their own viewpoint towards the corresponding direction.

Model Selection: Network Disturbances Model

- In a statistical context, the process of adapting to deviations from intrinsic opinions, rather than to the opinions themselves, is mirrored by the autocorrelation of residuals.
- -These residuals, ε_i , encapsulate latent forces that steer an individual's opinion away from their intrinsic standpoint.

$$y = X\beta + \varepsilon$$
 $\varepsilon = \rho W\varepsilon + \upsilon$ $\upsilon \sim N(0, \sigma^2 I)$


Specification of Influence Matrix (W): Importance

- Parameter estimation: you may directly change the W and obtain different estimates. The difference can be substantial.
- Hypothesis test: you may directly change W and draw a different conclusion
- Theories of social influence test: you may directly change one's theory and change W

Theories of Social Influence

- Social influence transpires when an individual adjusts their behavior, attitude, or belief to align with those of others within the social framework.
- In network analysis, social influence is perceived as a dyadic phenomenon: one individual adapts their behavior to match that of another, fostering behavior similarity in their actions.
- The term "contagion" is commonly employed to characterize these processes of social influence.

Theories of Social Influence

- Communication: actors use actors with whom they are directly tied as their frame of reference.
- Comparison: actors use actors they feel similar to as their frame of reference

- In the communication aspect of contagion, individuals exchange information regarding a particular issue, express uncertainties, share past experiences, and learn from each other's errors. This process results in a convergence of opinions, attitudes, and beliefs, though not necessarily conformity in behavior.
- On the contrary, comparison, which can occur among individuals not directly connected (non-adjacent actors), relies explicitly on role modeling and the emulation of behavior.

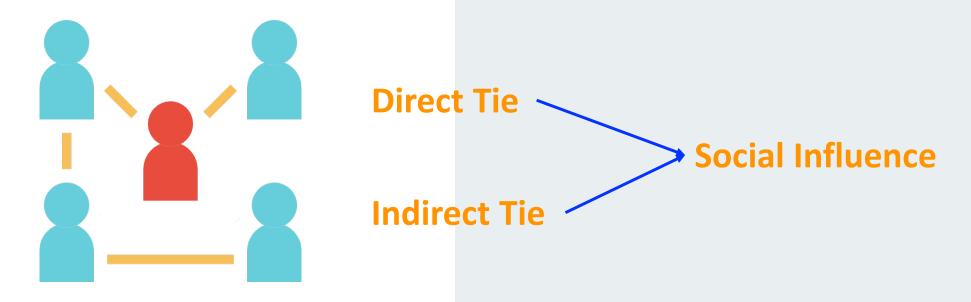
- In brief, communication tends to foster similarity in beliefs without necessarily impacting behavior, while comparison tends to induce similarity in behavior without necessarily altering underlying beliefs.
- The significance of this disparity lies in the fact that while a researcher can easily observe similarity in behavior, detecting similarity in beliefs and attitudes is more challenging.

Social Infuence

- The operationalization of a communication process is via cohesion.
 - Cohesion encompasses factors such as the quantity, length, and strength of connections between actors, giving rise to notions like cliques, k-plexes, and k-cores.
 - It's examined whether actors belonging to the same subgroup (cliques, k-plexes, and k-cores) exhibit similar behaviors.

Social Influence

- Comparison is commonly operationalized using the notion of equivalence.
 Equivalently positioned actors share similar network embeddings.
 - Actors are deemed structurally equivalent if their ties to and from all actors are identical. They may not be directly connected and might not even be aware of each other's existence.


- The communication perspective links similarity to the direct connections between actors:
 - When adjacent actors are seen to be or become alike, this is attributed to communication.
- On the other hand, the comparison viewpoint links similarity to the manner in which actors are situated within the social structure:
 - If equivalent actors with similar embeddings are observed to be or become alike, this is attributed to comparison.

- An endeavor is undertaken to contrast communication with comparison by initially assessing equivalence while controlling for cohesion.
- The rationale behind this approach is that cohesion encompasses communication effects, thus by isolating equivalence, only comparison effects are estimated.

- Cohesion will continue to encapsulate both direct and indirect communication, as well as comparison effects among adjacent actors.
- Equivalence will encapsulate *comparison effects and indirect communication among non-adjacent actors*.
- -It may be theoretically feasible to argue for one over the other, empirically testing their relative impact is challenging.

Adjacency vs Non-adjacent

 Differentiate between contagion among directly connected actors and contagion among actors without direct ties.

Adjacency vs Non-adjacent

- Contagion among directly connected actors encompasses both direct and indirect communication and comparison effects.
- Contagion among actors lacking direct ties encompasses direct and indirect comparison as well as indirect communication effects.
- As the sociometric distance between actors <u>increases</u>, the influence of indirect communication and comparison <u>diminishes</u>, thereby amplifying the direct comparison component.

31

Social Influence: among adjacent and non-adjacent

Adjacent Actors	Non-adjacent Actors	
Communication Indirect Communication	Indirect Communication	Direct
Comparison Indirect Comparison	Comparison Indirect Comparison	Communcation

- The differentiation between contagion via direct and indirect connections doesn't fully resolve the debate between communication and comparison.
- It does segregate the impacts of contagion via direct communication, whick represents one of the primary theoretical explanations for contagion.

Operationalizations for Contagion

- Contagion among adjacent actors is simply operationalized by examining whether they tend to exhibit similar opinions or behaviors.
- –For contagion among non-adjacent actors, two distinct operational approaches are employed:
 - The first approach involves assessing equivalence among unconnected actors.
 - The second approach involves examining the quantity of paths of different lengths between actors.

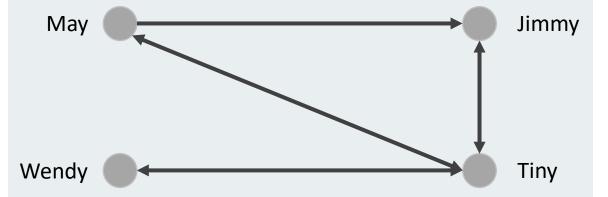
Operationalization of Weighting Matrix *W*

-Steps

- Row versus column normalization
- Influence between adjacent actors: cohesion
- Influence between non-adjacent actors: equivalence
- Influence between non-adjacent actors: indirect paths
- Other specifications

May 20, 2024

Row versus Column Normalization


	May	Jimmy 🤳	Tiny	Wendy
May		1	1	0
Jimmy	0		1	0
Tiny	1	1		1
Wendy	0	0	1	

Row Normalization

$$w_{ij}^{[1]} = \frac{a_{ij}}{a_{i.}}$$

If actor *i* has **three outgoing ties**, each of his alters will have weight **1/3**.

An actor with only one outgoing tie will be fully influenced by this one alter.

Column Normalization

 $w_{ij}^{[2]} = \frac{\alpha_{ij}}{a_{\cdot j}}$ The strength of influence actor *j* has over

actor i now depends on the number of actors influenced by j.

Row versus Column Normalization

Row Normalization	Column Normalization
Each outgoing contact has equal influence for each actor	Each ingoing onact has equal influence for each other
Weight proportional to out degree	Weight proportional to indegree
Total amount of accepted influence equal for all actors	Total amount of exerted influence equal for all actors
Deals with accepted/ received influence	Deals with exerted/exected influence

Influence between Adjacent Actors: Cohesion

Cohesion $w_{ij}^{[3]} = \frac{a_{ij}}{a_{i.} + 1}$, 1 is the resistance Weighting (Resource of an actor)

$$w_{ij}^{[4]} = \frac{r_j a_{ij}}{r_i + \sum_{k=1, k \neq i}^g r_k a_{ik}}$$

May 20, 2024

Influence between Adjacent Actors: Equivalence

$$w_{ij}^{[6]} = \frac{l_{ji}}{1 - l_{ii}},$$

where $l_{ij} = \frac{(d_j - d_{ij})^{v}}{\sum_{q=1}^{g} (d_j - d_{qj})^{v}}$

v: a constant

$$w_{ii}$$
: is set to zero and $d_j = \max_i (d_{ij})$

- Burt and Doreian utilized weight to depict the transformation of scientists' expressed interests in a scientific journal into a journal norm.
- This norm signifies the expected level of interest in the journal by scientists due to their structural position within "invisible colleges." It quantifies the degree to which actor *j* is perceived by actor *i* as their sole structural peer within the college.

Influence between Non-adjacent actors: Indirect Paths

- To model influence between **non-adjacent** actors, the analysis begins with exploring the **indirect connections** between them.
- Contagion is subsequently perceived to propagate from alter to ego through interactions with third actors.
- The adjacency matrix is subjected to squaring or cubing, following which entries corresponding to adjacent actors are nullified.

Other specifications

– For the study of policy and power networks,

$$w_{ij}^{[7]} = \frac{r_{i(j)}^{\alpha}}{d_{ij}^{\beta}}$$

 r_i : as (political) resources available to actor i.

 d_{ij} : represents how difficult it is for j to claim i's resources

Statistical Tests on the Weight Structure

- The researcher has narrowed down the potential influence structures to one and seeks to test their theory, as embodied by a specific weight matrix, against alternative influence structures denoted by different W matrices.
- Scenario 1: The researcher regards one structure as the null hypothesis and aims to compare it against alternative structures.
- -Scenario 2: The researcher entertains multiple influence structures that are equally plausible from a theoretical perspective. The ultimate selection among them relies on statistical analysis.

Situation 1: When a Null Hypothesis is Available

– Formula

$$H_0: y = \rho_0 W_0 y + X_0 \beta_0 + \varepsilon_0$$

$$H_1: y = \rho_1 W_1 y + X_1 \beta_1 + \varepsilon_1$$

– Augmented regressions

$$y = (1 - \alpha)(\rho_0 W_0 y + X_0 \beta_0) + \alpha \left(\widehat{\rho_1} W_1 y + X_1 \widehat{\beta_1}\right) + v$$

- If H_0 is true, then the true value of nesting parameter α is equal to 0.

42

Situation 2: When No Hypothesis is Available

Akaike information criterion (AIC)

$$AIC = -2L(\hat{\rho}, \hat{\beta}) + q(k)$$

Where $L(\hat{\rho}, \hat{\beta})$ is the log-likelihood at the maximum and q(k) is a penalty function of the number of unknown parameters in the model.

By comparing the AIC values across all models, the model with the lowest AIC indicates the best fit.

Summary

- -The Mechanism of Influence: Communication, Comparison, Adjacency, or Non-Adjacency.
- -The Source of Influence: Do actors replicate alter's behavior or opinion directly (network effect), or do they mirror the adaptation of alter's behavior or opinion? (network disturbance)
- Normalization: Whether actors have a restricted capacity to influence others (row normalization) or a limited readiness to accept influence (column normalization).

R: Installation

- Download R and Install: <u>https://www.r-project.org/</u>
- Click "download R"
- Select your OS

[Home]

Download CRAN R Project About R Logo Contributors What's New? Reporting Bugs Conferences Search Get Involved: Mailing Lists Get Involved: Contributing Developer Pages R Blog

The R Project for Statistical Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To **download R**, please choose your preferred CRAN mirror.

If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News

- We are deeply sorry to announce that our friend and colleague Friedrich (Fritz) Leisch has died. Read our tribute to Fritz here.
- R version 4.4.0 (Puppy Cup) has been released on 2024-04-24.
- R version 4.3.3 (Angel Food Cake) (wrap-up of 4.3.x) was released on 2024-02-29.
- Registration for useR! 2024 has opened with early bird deadline March 31 2024.
- You can support the R Foundation with a renewable subscription as a supporting member.

R: Installation

CRAN Mirrors

The Comprehensive R Archive Network is available at the following URLs, please choose a location close to you. Some statistics on the status of the mirrors can be found here: main page, windows release, windows old release.

If you want to host a new mirror at your institution, please have a look at the CRAN Mirror HOWTO.

0-Cloud	
https://cloud.r-project.org/	Automatic redirection to servers worldwide, currently sponsored by Posit
Argentina	
http://mirror.fcaglp.unlp.edu.ar/CRAN/	Universidad Nacional de La Plata
Australia	
https://cran.csiro.au/	CSIRO
https://mirror.aarnet.edu.au/pub/CRAN/	AARNET
https://cran.ms.unimelb.edu.au/	School of Mathematics and Statistics, University of Melbourne
Austria	
https://cran.wu.ac.at/	Wirtschaftsuniversität Wien
Belgium	
https://www.freestatistics.org/cran/	Patrick Wessa
https://ftp.belnet.be/mirror/CRAN/	Belnet, the Belgian research and education network
Brazil	
https://cran-r.c3sl.ufpr.br/	Universidade Federal do Parana
https://cran.fiocruz.br/	Oswaldo Cruz Foundation, Rio de Janeiro
https://vps.fmvz.usp.br/CRAN/	University of Sao Paulo, Sao Paulo
https://brieger.esalq.usp.br/CRAN/	University of Sao Paulo, Piracicaba
Bulgaria	
https://ftp.uni-sofia.bg/CRAN/	Sofia University
Canada	
https://mirror.rcg.sfu.ca/mirror/CRAN/	Simon Fraser University, Burnaby
https://muug.ca/mirror/cran/	Manitoba Unix User Group
https://mirror.csclub.uwaterloo.ca/CRAN/	University of Waterloo
https://cran.mirror.rafal.ca/	Rafal Rzeczkowski
Taiwan	

https://cran.csie.ntu.edu.tw/

Taiwan

https://cran.csie.ntu.edu.tw/

National Taiwan University, Taipei

May 20, 2024

Chun-Hsiang Chan @ ST.ds

R: Installation

Download and Install R

Precompiled binary distributions of the base system and contributed packages, **Windows and Mac** users most likely want one of these versions of R:

- Download R for Linux (Debian, Fedora/Redhat, Ubuntu)
- Download R for macOS
- Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.

R: Installation

R for macOS

This directory contains binaries for the base distribution and of R and packages to run on macOS. R and package binaries for R versions older than 4.0.0 are only available from the CRAN archive so users of such versions should adjust the CRAN mirror setting (https://cran-archive.r-project.org) accordingly.

Note: Although we take precautions when assembling binaries, please use the normal precautions with downloaded executables.

R 4.4.0 "Puppy Cup" released on 2024/04/24

Please check the integrity of the downloaded package by checking the signature: pkgutil ---check-signature R-4.4.0-arm64.pkg in the *Terminal* application. If Apple tools are not avaiable you can check the SHA1 checksum of the downloaded image: openssl sha1 R-4.4.0-arm64.pkg

Latest release:

	Latest release:	Mac Os
For Apple silicon (M1-3) Macs: <u>R-4.4.0-arm64.pkg</u>	R 4.4.0 binary for macOS 11 (Big Sur) and higher, signed and notarized packages.	Mac Or
SHA1-hash: 45e08d760f10c939b1a341223562bf0ac7051332 (ca. 94MB, notarized and signed)	Contains R 4.4.0 framework, R.app GUI 1.80, Tcl/Tk 8.6.12 X11 libraries and Texinfo 6.8. The latter components are optional and can be ommitted when choosing "custom install", they are only needed use the tcltk R package or build package documentation from sources.	
R-4.4.0-x86 64.pkg SHA1-hash: 13c1ae112666425ddc9bbb6327b66d2bcb26eba8 (ca. 96MB, notarized and signed)	macOS Ventura users: there is a known bug in Ventura preventing installations from some locations prompt. If the installation fails, move the downloaded file away from the <i>Downloads</i> folder (e.g., to y Desktop).	
	Note: the use of X11 (including tcltk) requires $\underline{XQuartz}$ (version 2.8.5 or later). Always re-install X upgrading your macOS to a new major version.	Quartz when
	This release uses Xcode 14.2/14.3 and GNU Fortran 12.2. If you wish to compile R packages which Fortran code, you may need to download the corresponding GNU Fortran compiler from <u>https://mac.project.org/tools</u> . Any external libraries and tools are expected to live in /opt/R/arm64 (Apple silico /opt/R/x86_64 (Intel).	<u>.R-</u>

R for Windows

Subdirectories:

<u>base</u>	Binaries for base distribution. This is what you want to install R for the first time.
<u>contrib</u>	Binaries of contributed CRAN packages (for $R \ge 4.0.x$).
old contrib	Binaries of contributed CRAN packages for outdated versions of R (for $R < 4.0.x$).
<u>Rtools</u>	Tools to build R and R packages. This is what you want to build your own packages on Windows, or to build R itself.

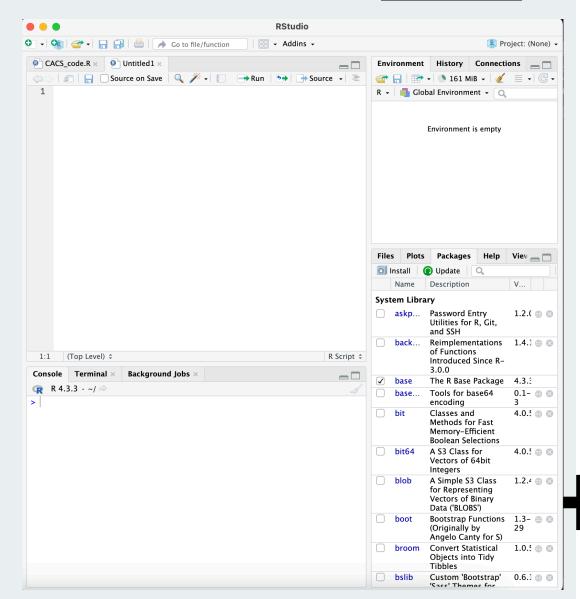
Please do not submit binaries to CRAN. Package developers might want to contact Uwe Ligges directly in case of questions / suggestions related to Windows binaries.

You may also want to read the <u>R FAQ</u> and <u>R for Windows FAQ</u>.

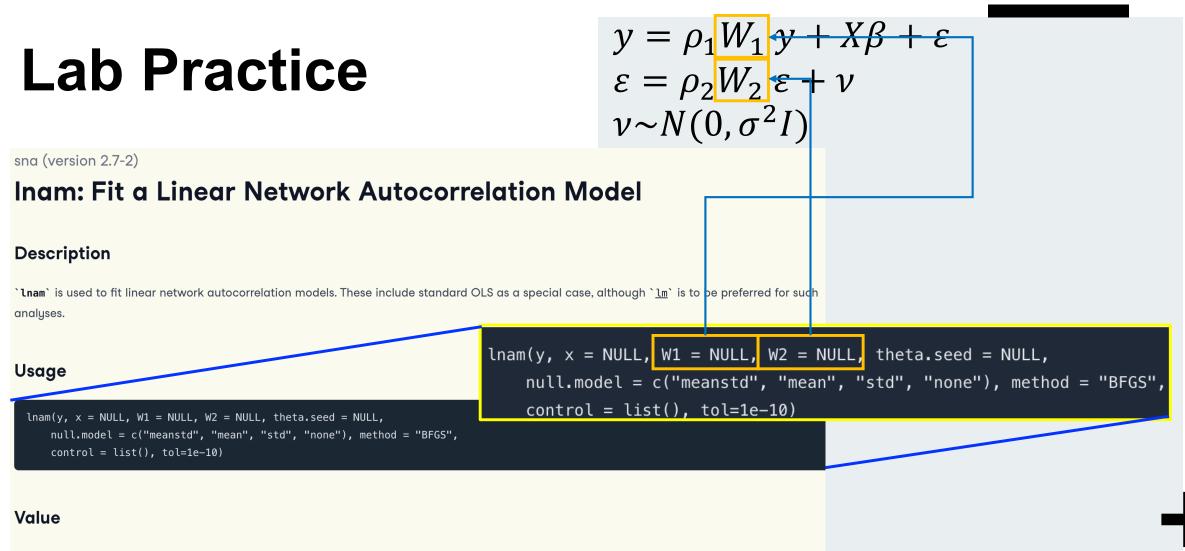
R: Installation

Note: CRAN does some checks on these binaries for viruses, but cannot give guarantees. Use the normal precautions with downloaded executables.

R Studio: Installation


https://posit.co/download/rstudio-desktop/

2: Install RStudio


DOWNLOAD RSTUDIO DESKTOP FOR MACOS 12+

This version of RStudio is only supported on macOS 12 and higher. For earlier macOS environments, please <u>download</u> a previous version.

Size: 566.51 MB | SHA-256: A5EDA699 | Version: 2024.04.1+748 | Released: 2024-05-11

May 20, 2024

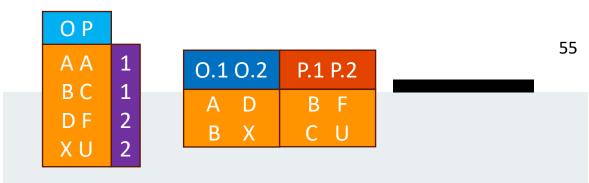
– Package installation

Files	Plots	Packages	Help	Pre	Presentat 👝 🗖						
O li	nstall 🜘	Update									
	Name	Descripti	on		Ver						
Syst	em Library	/									
	askpass	Passwor R, Git, ai		Jtilities fo	r	1.2.0					
	backports	Reimple Function R–3.0.0		ons of uced Sinc	e	1.4.1					
	base	The R Ba	se Pack	age		4.3.3					
	base64en	Tools fo	r base64	3	0.1-3						
	bit	Classes Memory Selectior	-Efficien	ast	4.0.5	• •					
	bit64	A S3 Cla 64bit Int		ctors of 4.0.5							
	blob	A Simple Represe		1.2.4							

Install Packages	
Install from: Repository (CRAN)	? Configuring Repositories✓
Packages (separate multiple wit	h space or comma):
numDeriv	
Install to Library: /Library/Frameworks/R.framework/Ve	ersions/4.3-arm64/Resources/lib \sim
✓ Install dependencies	
	Install Cancel

```
# load libraries
 1
    library(reshape)
 2
    library(igraph)
 3
    library(sna)
 4
    library(numDeriv)
 5
 6
    # load data
 7
    load('~/Documents/python/social_network_analysis/studentnets.peerinfl.rda')
 8
    # how does a student (std_id) in the first semester (sem_id) like this subject (sub)?
 9
    # show the first 10 rows
10
    head(attitudes, n=10)
11
                                    Semester
                                                                   Subject Preference (1-5)
                              > head(attitudes n=10)
```

> 1	ieuu(ut)	<u>. Luues</u> ,	U=TO)					_			-										
Student ID	std_id	sem_id	cls_id	tlks	tlkt	like_c	imp	egrd	jgrd	sub	tot	frn	cmt	tch	voln	call	misb	sanc	sftch	tfstd	
Student ID 1	16144	1	851	4	2	NA	NA	2	-1	2	2	3	2	2	NA	NA	NA	NA	NA	NA	
2	16181	1	851	4	2	2	NA	3	0	2	3	4	3	2	NA	NA	NA	NA	NA	NA	
3	16247	1	851	4	4	2	NA	4	0	2	2	4	3	2	NA	NA	NA	NA	NA	NA	
4	16399	1	851	4	2	3	NA	4	1	3	2	3	1	2	NA	NA	NA	NA	NA	NA	
5	15469	1	901	2	2	3	NA	2	0	3	4	4	4	4	NA	NA	NA	NA	NA	NA	
6	15947	1	901	3	2	3	NA	3	0	3	4	4	3	4	NA	NA	NA	NA	NA	NA	
7	15973	1	901	3	2	3	NA	4	0	3	4	4	3	4	NA	NA	NA	NA	NA	NA	
8	16073	1	901	4	3	3	NA	3	0	3	3	4	3	4	NA	NA	NA	NA	NA	NA	
9	16177	1	901	2	2	3	NA	3	0	3	3	3	2	4	NA	NA	NA	NA	NA	NA	
10	16034	1	901	3	3	4	NA	3	0	3	4	4	3	4	NA	NA	NA	NA	NA	NA	


53

13 # the friendship in the first semester 14 # show the first 10 rows 15 head(sem1, n=10)

Friendship network: ego is std_id and alter for each ego is alter_id

> head(sem1, n=10)

	std_id	alter_id	timea	ona	оса	acta	nacta	wrka	nbra	otha	wkna	bfa	lva	cls_id
2	149824	119516	5	1	0	0	0	0	0	0	0	0	0	251
3	149824	122634	1	1	0	0	0	0	0	0	0	0	0	251
4	149824	114679	1	0	1	0	0	0	0	0	0	0	0	251
7	16868	17142	0	1	0	1	0	0	0	0	0	0	0	851
8	16877	16681	1	0	1	1	0	0	0	0	0	0	0	851
9	16877	16769	1	0	1	1	0	0	0	0	0	0	0	851
10	16877	16851	3	1	0	0	0	0	1	0	0	0	0	851
11	16877	16868	7	0	1	0	0	0	1	0	0	0	0	851
13	16902	16690	0	0	1	0	0	0	0	0	0	0	0	851
14	16902	16868	0	0	1	1	0	0	0	0	0	0	0	851

17 # split the semester data into two parts from a long table to a wide table

1

NA

NA

NA

2

1

NA

1

NA

NA

NA

2

1

NA

0

NA

NA

NA

0

0

NA

-1

NA

NA

NA

1

1

NA

0

NA

NA

NA

1

1

NA

NA

NA

NA

NA

NA

NA

NA

- 18 attitudesw = reshape(attitudes, idvar="std_id", timevar="sem_id", direction="wide")
- 19 # show the first 10 rows

1

NA

NA

NA

2

2

NA

NA

NA

NA

NΑ

4

NA

NA

NA

3

3

NA

1

NA

NA

NA

2

1

NA

1

NA

NA

NA

3

2

NA

20 head(attitudesw, n=10)

>	head(a	ttitud	esw, n=	10)																											
	std_i	d cls_	id.1 tl	ks.1 tl	.kt.1 l	ike_c.1 i	imp.1 eg	grd.1 j	grd.1 sı	ub.1 to	ot.1 fi	n.1 cr	nt.1 to	h.1 vo	oln.1 ca	all.1	m	nisb.1 so	anc.1 sf	tch.1 tf	std.1 tf	^r os.1 c	hal.1 pr	rev.1 cl	s_id.2 t	lks.2 t	lkt.2 li	ke_c.2 i	mp.2 eg	grd.2 j	grd.2
1	1614	4	851	4	2	NA	NA	2	-1	2	2	3	2	2	NA	NA	1	NA	NA	NA	NA	NA	NA	0	851	4	2	3	3	1	-1
2	1618	1	851	4	2	2	NA	3	0	2	3	4	3	2	NA	NA	2	NA	NA	NA	NA	NA	3	0	851	3	2	2	2	3	1
3	1624	7	851	4	4	2	NA	4	0	2	2	4	3	2	NA	NA	3	NA	NA	NA	NA	NA	2	0	726	4	1	3	3	4	1
4	1639	9	851	4	2	3	NA	4	1	3	2	3	1	2	NA	NA	4	NA	NA	NA	NA	NA	2	0	851	4	2	2	3	2	-1
5	1546	9	901	2	2	3	NA	2	0	3	4	4	4	4	NA	NA	5	NA	NA	NA	NA	NA	1	0	NA	NA	NA	NA	NA	NA	NA
6	1594	7	901	3	2	3	NA	3	0	3	4	4	3	4	NA	NA	6	NA	NA	NA	NA	NA	3	0	NA	NA	NA	NA	NA	NA	NA
7	1597	'3	901	3	2	3	NA	4	0	3	4	4	3	4	NA	NA	7	NA	NA	NA	NA	NA	3	0	NA	NA	NA	NA	NA	NA	NA
8	1607	'3	901	4	3	3	NA	3	0	3	3	4	3	4	NA	NA	8	NA	NA	NA	NA	NA	3	0	692	2	3	2	3	2	0
9	1617	7	901	2	2	3	NA	3	0	3	3	3	2	4	NA	NA	9	NA	NA	NA	NA	NA	3	0	692	3	2	2	3	3	0
10	1603	4	901	3	3	4	NA	3	0	3	4	4	3	4	NA	NA	10	NA	NA	NA	NA	NA	3	1	NA	NA	NA	NA	NA	NA	NA
																		• • •				• •	•• • •	• •					• •	-	
	sub.2	tot.2	frn.2	cmt.2 t	ch.2 v	oln.2 cal	1.2 mis	sb.2 sa	nc.2 sf	tch.2 t	fstd.	2 tfro	s.2 cha	il.2 pr	rev.2																
1	2	1	2	1	2	1	1	1	1	0	(0	1	NA	NA																
2	1	. 3	3	2	2	3	2	1	1	0	(0	0	NA	NA																
3	4	- 2	4	3	3	2	2	3	1	2		2	2	NA	NA																

NA

NA

NA

NA

NA

NA

NA

5

6

7

8

9

10

NA

NA

2

2

NA

NA

NA

NΑ

2

- 22 # calculate peer influences 23 # create an empty array
- 24 attitudesw\$mfrsub.1 = numeric(length(attitudesw\$sub.1))
- 25 # calculate peer influence for each student
- 26 for(i in 1:length(attitudesw\$std_id)){
- 27 # first get alters of student i:
- 28 altrs = sem1\$alter_id[sem1\$std_id == attitudesw\$std_id[i]]
- 29 # then get alters' attitudes
- 30 altatts = attitudesw\$sub.1[attitudesw\$std_id %in% altrs]
- 31 # now count how many friends like the class more than "3"
- 32 attitudesw\$nfrsubgt3[i] = length(which(altatts > 3))
- 33 # then take the mean, ignoring NAs:
- 34 attitudesw\$mfrsub.1[i] = mean(altatts, na.rm = TRUE)}
- 35 # show the first 10 rows
- 36 head(attitudesw, n=10)

											_					
> ł	nead(at	titudes	w, n⊧	=10)												
				-	tlkt.1	like_c.1	1 imp.1	egrd.1	jgrd.1 s	sub.1 t	ot.1	frn.1	L cmt.1 +	tch.1	voln.1	call.1
1	16144	8	851	4	2	NA	A NA	<u>ک</u> ۲	-1	2	2	З	3 2	2	NA	NA
2	16181	. 8	351	4	2	2	2 NA	. 3	0	2	3	4	4 3	2	NA	NA
3	16247	8	351	4	4	2	2 NA	4	0	2	2	4	4 3	2	NA	NA
4	16399	8	351	4	2	3	3 NA	4	1	3	2	3	31	2	NA	NA
5	15469	9	01	2	2	3	3 NA	2	0	3	4	4	4 4	4	NA	NA
6	15947	9	01	3	2	3	3 NA	3	0	3	4	4	4 3	4	NA	NA
7	15973	9	01	3	2	3	3 NA	4	0	3	4	4	4 3	4	NA	NA
8	16073	9	01	4	3	3	3 NA	3	0	3	3	4	4 3	4	NA	NA
9	16177	9	01	2	2	3	3 NA	3	0	3	3	3		4	NA	NA
10	16034		901	3	3		4 NA	· •	-	3	4		4 3	4	NA	NA
	misb.1	sanc.1	. sft	ch.1 t	fstd.1	tfros.1	chal.1	prev.1	cls_id.2	2 tlks.	2 tlk	t.2 1	ike_c.2	imp.2	egrd.2	jgrd.2
1	NA	NA		NA	NA	NA	NA	. 0	853	1	4	2	3	3	1	-1
2	NA	NA		NA	NA	NA	3	6 0	853	1	3	2	2			1
3	NA	NA		NA	NA	NA	2		• = •		4	1	3	-		_
4	NA	NA		NA	NA	NA	2	-	853		4	2	2	-		
5	NA	NA	1	NA	NA	NA	1		N	4 N	A	NA	NA	NA	. NA	NA
6	NA	. NA	1	NA	NA	NA	3		N	4 N	A	NA	NA	NA	. NA	NA
7	NA			NA	NA	NA	3				A	NA	NA			
8	NA			NA	NA	NA	3				2	3	2			
9	NA			NA	NA	NA	3				3	2	2			-
10	NA		-	NA	NA	NA	3	_			A	NA	NA			
		tot.2 f							sanc.2 s		tfstd				•	
1	2	1	2			1	1	1	1	0		0	1	NA		2.40000
2	1	3	3			3	2	1	1	0		0	0	NA		2.91666
3	4	2	4	-		2	2	3	1	2		2	2	NA		2.60000
4	3	1	2	_	_	1	1	1	1	0		-1	0	NA	NA	Na
5	NA	NA	NA			NA	NA	NA	NA	NA		NA	NA	NA		3.00000
6	NA	NA	NA			NA	NA	NA	NA	NA		NA	NA	NA		3.00000
7	NA	NA	NA			NA	NA	NA	NA	NA		NA	NA	NA		3.33333
8	2	2	4	-		2	3	2	2	0		1	1	NA		2.42857
9	2	3	4	-		1	2	1	1	0		1	1	NA		3.12500
10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	3.50000
	nfrsub	-														
1		0														
2		4														

56

3

5

6

7

8

1 0

0

2

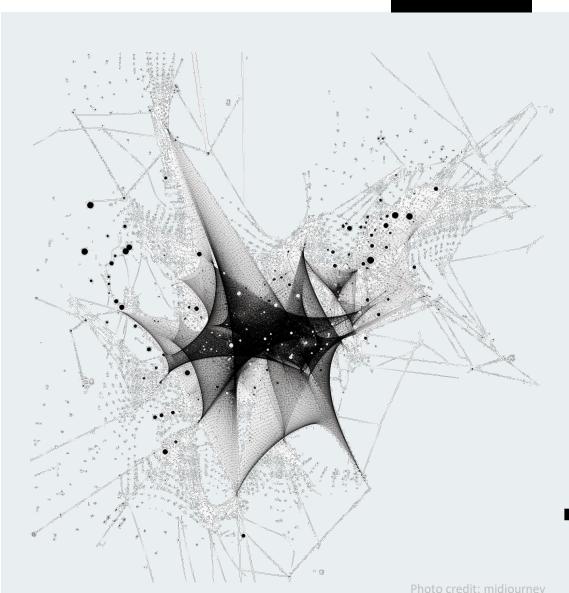
1

0

2

1

```
38 # delete all na values and obtain the average of altatts
    attitudesw$mfrsub.1[i] = mean(altatts, na.rm = TRUE)
39
   # show the first 10 rows
40
    head(attitudesw, n=10)
41
42
    # transform from a dataframe to a matrix
43
    sem1mat <- as.matrix(sem1[1:2])</pre>
44
45
    # transform from a integer to a character
46
    sem1mat[,1]=as.character(sem1mat[,1])
47
    sem1mat[,2]=as.character(sem1mat[,2])
48
49
    # transform edgelist to a igraph's graph
50
    sem1graph <- igraph::graph_from_edgelist(sem1mat)</pre>
51
   # obtain adjacent matrix
52
    sem1matrix = igraph::get.adjacency(sem1graph)
53
54
   # as a matrix
    sem1matrix = as.matrix(sem1matrix)
55
   # extract the dataframe with conditions
56
    attitudesw = attitudesw[match(row.names(sem1matrix), attitudesw$std_id),]
57
    # drop na values
59
    atts = attitudesw[!is.na(attitudesw$sub.2),]
60
    atts = atts[!is.na(atts$sub.1),]
61
    atts = atts[!is.na(atts$mfrsub.1),]
62
```


Do average
 Integer to Character
 Edgelist to igraph
 Drop na

⊿ ■

_ab Practice	Call: lnam(y = atts\$sub.2, x = cbind(atts\$sub.1, atts\$mfrsub.1), W2 = W)
<pre>64 # define a weight matrix 65 W = sem1matrix 66 # make sure the rows and columns in W are in the same order as atts: 67 W = W[match(atts\$std_id,row.names(W)), match(atts\$std_id,colnames(W))] 68 # make sure (this will return 0 if we did it right): 69 which(rownames(W) != atts\$std_id) 70 # Linear Network Autocorrelation Model. 71 pim1 <- lnam(atts\$sub.2,cbind(atts\$sub.1, atts\$mfrsub.1), W2 = W) 72 # show the results 73 summary(pim1)</pre>	Residuals: Min 1Q Median 3Q Max -2.4678 -0.4678 0.1391 0.4455 2.0064 Coefficients: Estimate Std. Error Z value Pr(> z) X1 0.60696 0.04019 15.103 < 2e-16 *** X2 0.34667 0.04232 8.191 2.22e-16 *** rho2.1 0.02887 0.01691 1.707 0.0878 . Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Estimate Std. Error Sigma 0.7247 0.001 Goodness-of-Fit: Residual standard error: 0.7322 on 342 degrees of freedom (w/o Sigma) Multiple R-Squared: 0.4136, Adjusted R-Squared: 0.4085 Model log likelihood: -379 on 341 degrees of freedom (w/Sigma) AIC: 766.1 BIC: 781.4 Null model: meanstd Null log likelihood: -476.3 on 343 degrees of freedom AIC: 956.5 BIC: 964.2 AIC difference (model versus null): 190.4 Heuristic Log Bayes Factor (model versus null): 182.8

References


- Prof. Tzai-Hung Wen: Tutorials on Network Data Analysis and Models
- McFarland, Daniel, et.al. 2010. "Social Network Analysis Labs in R." Stanford University.

Social Network Analysis

The End

Thank you for your attention!

Email: chchan@ntnu.edu.tw Website: toodou.github.io